TOPIC PLAN

Partner organization	Belgrade Metropolitan University	
Topic	Artificial intelligence	
Lesson title	Classification in machine learning	
Learning objectives	Students can interpret basic concepts of classification. Students can project Bayesian classifier. Students are able to solve practical classification problems on artificial data and real-world datasets.	Methodology \square Modeling \square Collaborative learning \square Project based learning
Aim of the lecture / Description of the practical problem	The aim of this lecture is to learn basic concepts of classification, to gain knowledge for projecting Bayesian classifier and for solving practical classification problems on artificial data as well as on real-world datasets. In this lecture classification with Bayesian classifier is explained on two problems. In first problem there are artificial data where covariance matrices of classes are same and mathematical model for solving of this type of classification problem is presented. In second problem there are real data (famous lris dataset) where covariance matrices of classes are different and mathematical model for solving of this type of classification problem is presented. Problems are practically solved in Python.	\square Problem based learning Strategies/Activitie s \square Graphic Organizer -Think/Pair/Share \square Discussion questions
Previous knowledge assumed:	Basics of calculus. Basics of linear algebra. Basics of statistics. Basic of Python programming.	Assessment for learning \square Observations \square Conversations \square Work sample \square Conference \square Check list \square Diagnostics

[^0]
Introduction / Theoretical

 basics
Assessment as learning

Self-assessment
\square Peer-assessment
\square Presentation
\square Graphic Organizer -Homework

Assessment of learning
-Test
■Quiz
\square Presentation
\square Project
\square Published work
and it represents probability that random variable X will take value that is less or equal to argument x. It has three main characteristics:

$$
\begin{gathered}
F_{X}(\infty)=1 \Leftrightarrow P_{r}\{X \leq \infty\}=1 \\
F_{X}(-\infty)=0 \Leftrightarrow P_{r}\{X \leq-\infty\}=0 \\
x_{1} \leq x_{2} \Rightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)
\end{gathered}
$$

Probability density function is defined as:

$$
f_{X}(x)=\frac{\partial F(x)}{\partial x}
$$

Distribution function can be written as:

$$
F_{X}(x)=\int_{-\infty}^{z} f_{X}(\tau) d \tau
$$

Probability density function has two constraints:
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

$$
\begin{gathered}
F_{X}(\infty)=1 \Rightarrow \int_{-\infty}^{\infty} f_{X}(x)=1 \\
\left(x_{1} \leq x_{2} \Rightarrow F_{X}\left(x_{1}\right) \leq F_{X}\left(x_{2}\right)\right) \Rightarrow(\forall x) f_{X}(x) \geq 0
\end{gathered}
$$

Random vector X is completely described with distribution function or with probability density function. However, in many practical situations, these functions can't be determined or they are too complex. In those cases, we must choose some other parameters that are less informative, but much more convenient in numerical sense. First and most important parameter is mathematical expectation or mean value of random vector X :

$$
M_{X}=E\{X\}=\int_{\sigma_{X}} x f_{X}(x) d x
$$

where integration goes through whole space of random vector X. Conditional mathematical expectation of random vector X for class w_{i} is integral:

$$
M_{i}=E\left\{X / w_{i}\right\}=\int x f\left(x / w_{i}\right) d x
$$

Second very important parameter that characterize random vector X is covariance matrix:

$$
\begin{gathered}
\Sigma=E\left\{\left(X-M_{X}\right)\left(X-M_{X}\right)^{T}\right\} \\
\Sigma=E\left\{\left[\begin{array}{c}
X_{1}-m_{1} \\
\cdot \\
\vdots \\
X_{n}-m_{n}
\end{array}\right]\left[\begin{array}{lll}
X_{1}-m_{1} & \ldots & \left.X_{n}-m_{n}\right]
\end{array}\right\}=\left[\begin{array}{ccc}
c_{11} & \cdots & c_{1 n} \\
\vdots & & \\
\vdots & & \\
c_{n 1} & \ldots & c_{n n}
\end{array}\right]\right.
\end{gathered}
$$

Component $c_{i j}$ of this matrix is:

$$
c_{i j}=E\left\{\left(X_{i}-m_{i}\right)\left(X_{j}-m_{j}\right)\right\} ;(i, j=1, \ldots, n)
$$

Thus, the diagonal elements of the covariance matrix form the variances of individual random variables in random vector, while non-diagonal elements represent covariances between random variables X_{i} and X_{j}. Although mathematical expectation and the covariance matrix are very important parameters which describe the distribution of

[^1] $\left.$\begin{tabular}{|l|l||}

\hline \& $\begin{array}{l}\text { a random vector, they are mostly unknown in practice and } \\
\text { need to be estimated based on measured samples. This } \\
\text { procedure is called sample estimation technique. This } \\
\text { technique is most commonly used to estimate the mean } \\
\text { and variance of a random variable. Namely, if is is } \\
\text { necessary to estimate the mean value of the random } \\
\text { variable Y whose realizations } Y_{i} ; i=1 \ldots, N \text { are known, the } \\
\text { simplest way is to determine arithmetic mean: }\end{array}$

$\qquad m_{Y}=\frac{1}{N} \sum_{1}^{N} Y_{i}$
\end{tabular}\(\left|\begin{array}{l}Similarly, estimation of variance can be written as:

\qquad \sigma_{Y}^{2}=\frac{1}{N} \sum_{1}^{N}\left(Y_{i}-m_{Y}\right)^{2}\end{array}\right| $$
\begin{aligned} & \text { HYPOTHESIS TESTING } \\
& \begin{array}{l}\text { The main goal of pattern recognition is to decide to which } \\
\text { category observed sample belongs. Based on observation } \\
\text { or measurement a measurement vector is formed. This } \\
\text { vector serves as an input to the decision rule through which } \\
\text { this vector joins one of the analyzed classes. Hypothesis } \\
\text { testing is a whole family of methods solving of this type of } \\
\text { a problem. These methods are very powerful, but they } \\
\text { assume knowing of joined probability density functions from } \\
\text { all classes and this information is often unknown in } \\
\text { practice. } \\
\text { In pattern recognition theory, we deal with random vectors } \\
\text { gained from different classes and each of them is } \\
\text { characterized with its distribution function and probability } \\
\text { density function. These functions are called conditional } \\
\text { functions, and according to that, conditional probability } \\
\text { density function for } i \text {-th class is noted as: }\end{array} \\
& \left\lvert\, \begin{array}{ll} & f\left(x / w_{i}\right) \text { or } f_{i}(x) ; i=1,2, \ldots, L\end{array}\right. \\
& \begin{array}{ll}\text { where } w_{i} \text { denotes class } i, \text { and } L \text { is overall number of }\end{array} \\
& \text { classes. Unconditional probability density function of } \\
& \text { random vector } X, \text { which is often called mixed density } \\
& \text { function is given as: }\end{aligned}
$$ \right\rvert\,\)
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

$$
f(x)=\sum_{i=1}^{L} P_{i} f_{i}(x)
$$

where Pi denotes a priori probability of appearance of i-th class. A posteriori probability of class when random vector X is given is noted as $P\left(w_{i} / X\right)$ or $q_{i}(x)$ and can be calculated based on Bayesian theorem:

$$
q_{i}(x)=\frac{P_{i} f_{i}(x)}{f(x)}
$$

For our problem we will assume that measurement vector is random vector whose conditional probability density function depends from class that sample comes from. So far as these conditional probability density functions are known, then pattern recognition problem becomes statistical hypothesis testing problem. We will observe case where we have two classes w_{1} and w_{2} whose a priori probabilities P_{1} and P_{2} are known, as well as corresponding a posteriori probability density function $f_{1}(X)=f\left(X / w_{1}\right)$ and $f_{2}(X)=f\left(X / w_{2}\right)$.

Let assume that we have measurement vector X and our task is to determine to which of two classes this vector belongs. Simple decision rule can be based on conditional probabilities $q_{1}(X)=\operatorname{Pr}\left(w_{1} / X\right)$ and $q_{2}(X)=\operatorname{Pr}\left(w_{2} / X\right)$ as follows:

$$
\begin{aligned}
& q_{1}(X)>q_{2}(X) \Rightarrow X \in w_{1} \\
& q_{1}(X)<q_{2}(X) \Rightarrow X \in w_{2}
\end{aligned}
$$

A posteriori probability $q_{i}(X)$ represents conditional probability that sample X comes from class w_{i} if its numerical value is known, i.e., realization. These probabilities can be calculated based on a priori probabilities of classes appearance Pi and a posteriori probability density function of measurement vectors $f_{X}=f_{X}\left(X / w_{i}\right)$, using Bayesian theorem:

$$
q_{i}(X)=\frac{f_{i}(X) P_{i}}{f(X)}=\frac{f_{i}(X) P_{i}}{f_{1}(X) P_{1}+f_{2}(X) P_{2}}
$$

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

Because mixed (a priori) probability density function is positive and joint for both a posteriori probability, decision rule can be written as follows:

$$
\begin{aligned}
& P_{1} f_{1}(X)>P_{2} f_{2}(X) \Rightarrow X \in w_{1} \\
& P_{1} f_{1}(X)<P_{2} f_{2}(X) \Rightarrow X \in w_{2}
\end{aligned}
$$

or we can write above equations as follows:

$$
\begin{aligned}
& l(X)=\frac{f_{1}(X)}{f_{2}(X)}>\frac{P_{2}}{P_{1}} \Rightarrow X \in w_{1} \\
& l(X)=\frac{f_{1}(X)}{f_{2}(X)}<\frac{P_{2}}{P_{1}} \Rightarrow X \in w_{2}
\end{aligned}
$$

Expression $l(X)$ is called likelihood ratio, and that is very important quantity in pattern recognition theory. Ratio $P_{2} /$ P_{1} is called threshold value in decision making. It is common practice to apply negative logarithm on likelihood ratio, and then decision rule has form:

$$
\begin{aligned}
& h(X)=-\ln (l(X))=-\ln \left(f_{1}(X)\right)+\ln \left(f_{2}(X)\right)<\ln \left(\frac{P_{1}}{P_{2}}\right) \Rightarrow X \in w_{1} \\
& h(X)=-\ln (l(X))=-\ln \left(f_{1}(X)\right)+\ln \left(f_{2}(X)\right)>\ln \left(\frac{P_{1}}{P_{2}}\right) \Rightarrow X \in w_{2}
\end{aligned}
$$

A sign of inequality changed direction because of negative logarithm use. Expression $\boldsymbol{h}(\boldsymbol{X})$ is called discrimination function. Further on we will consider that $P_{1}=P_{2}=0.5 \Rightarrow \ln \left(\frac{P_{1}}{P_{2}}\right)=0$. Stated rules above are called Bayesian rule or minimal error decision test. For analysis of stated rule, it is very important to determine probability of decision error. This classification rule can't ensure perfect classification (as well as other rules). When we say probability error, we consider probability of event that rule will bring wrong decision about measurement vector belonging to a class. Conditional probability of error for measurement vector, noted as $r(X)$, is equal to smaller of probabilities $q_{1}(X)$ and $q_{2}(X)$, i.e.

$$
r(X)=\min \left[q_{1}(X), q_{2}(X)\right]
$$

[^2]Total error which is called Bayesian error, noted as ϵ can be calculated as follows:

$$
\begin{gathered}
\epsilon=E\{r(X)\}=\int r(X) f(X) d X=\int \min \left[q_{1}(X), q_{2}(X)\right] f(X) d X \\
=\int \min \left[P_{1} f_{1}(X), P_{2} f_{2}(X)\right] d X=P_{1} \int_{L_{2}} f_{1}(X) d X+P_{2} \int_{L_{1}} f_{2}(X) d X \\
=P_{1} \epsilon_{1}+P_{2} \epsilon_{2}
\end{gathered}
$$

where

$$
\epsilon_{1}=\int_{L_{2}} f_{1}(X) d X ; \epsilon_{2}=\int_{L_{1}} f_{2}(X) d X
$$

Probability ε_{1} is called Type I probability error and it represents probability that sample which comes from first class is wrongly classified. Similarly, probability ε_{2} is called Type II probability error and it represents probability that sample which comes from second class is wrongly classified. In a total error relation first equality represents definition of this error, while other equality is applied Bayesian theorem. Integration area L_{1} is the area from which the decision rule joins the measurement vector X to the class w_{1} and analogously, integration area L_{2} corresponds to those vectors X which the decision rule classifies into a class w_{2}. Consequently, these areas are often called w_{1}-area and w_{2}-area, respectively. For measurement vectors from L_{1} area holds the relation $P_{1} f_{1}(X)>P_{2} f_{2}(X)$ and according to that conditional probability error is $r(X)=P_{2} f_{2}(X) / f(X)$. Analogously, for vectors from L_{2} area holds the relation $r(X)=P_{1} f_{1}(X)$ / $f(X)$. Based on that, we can say that Bayesian probability error consists of two terms. One of them refers to wrongly classified vectors from class w_{1}, while other refers to wrongly classified vectors from the class w_{2}.
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]| | Where $f_{h}\left(h / w_{i}\right)$ is a posteriori probability density function
 of discrimination function h for samples that come from
 class w_{i}.
 For our problem for artificially generated data random
 vector X is normally distributed. If random vector X
 normally distributed, its probability density function can be
 written as:
 $\qquad N_{X}(M, \Sigma)=\frac{1}{(2 \pi)^{n / 2}\|\Sigma\|^{1 / 2}} e^{-\frac{1}{2} d^{2}(X)}$ |
| :---: | :--- |
| $=\frac{1}{(2 p i)^{n / 2}\|\Sigma\|^{1 / 2}} e^{-\frac{1}{2}(X-M)^{T} \Sigma^{-1}(X-M)}$ | |

Where $N_{X}(M, \Sigma)$ is shorted notation for normal distribution with mathematical expectation M and covariance matrix Σ. Function $d^{2}(X)$ is called statistical distance (or d^{2} curve) of vector X from mathematical expectation vector M.

Action \quad After introducing theoretical concepts, discussion with students will be performed for solving two posted problems.
First problem is binary classification of artificially generated data. Data are normally distributed and data from first and second class have same covariance matrix. Second problem is classification of Iris dataset where data from classes have different covariance matrix.

SOLVING OF FIRST CLASSIFICATION PROBLEM

For our problem of artificially generated data, we have a posteriori probability density functions $f_{i}(X)$, where $i=1,2$. These functions are normal, with mathematical expectation vector M_{i} and covariance matrix Σ_{i}. Bayesian minimal error decision rule can be written in form:

$$
h(x)=-\ln (l(X))=-\ln \left(f_{1}(X)\right)+\ln \left(f_{2}(X)\right)<\ln \left(\frac{P_{1}}{P_{2}}\right) \Rightarrow X \in w_{1}
$$

Now we can replace $f_{1}(X)$ and $f_{2}(X)$ in upper equation and rewrite expression for $h(x)$:
"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^4]

[^5]| Consolidatio
 \mathbf{n} | - The teacher's discussion with the students through different questions;
 -
 Individually solving of simple tasks by the students under the supervision of
 the teacher;
 Given of examples by the teacher for introducing a new concepts and
 creative discussion with the students;
 - Given homework by the teacher with a time limit until the next class. | |
| :--- | :--- | :--- |
| Reflections and next steps | Classification theoretical background. | |
| Activities that worked | Parts to be revisited | |
| Introducing to classificiation basics.
 Solving problems in Python programming language. | | |
| References | | |
| [1] Emilia Kisić, CS374 - Artificial Intelligence, Authorized Lectures on Metropolitan University | | |
| Belgrade eLearning platform - LAMS, 2022. | | |
| [2] Artificial Intelligence: A Modern Approach. 4th Edition, S. Russell and P. Norvig. Prentice | | |
| Hall, 2021. | | |
| [3] Artificial Intelligence: A New Synthesis, Nils Nilsson, Morgan Kaufmann, 1998 | | |

"The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^0]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^1]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^2]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^3]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^4]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

[^5]: "The European Commission's support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein."

